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Use of cheaper metal than Rh, CHCl3-free Pd catalyst,
in 1,2-addition of aromatic aldehydes with arylboronic acids
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Abstract—Pd(OAc)2-(±)-tol-BINAP-catalyzed arylation reaction of aromatic aldehydes with arylboronic acids in the absence of
CHCl3 is described.
� 2006 Published by Elsevier Ltd.
Table 1. Effect of Pd sourcesa

CHO
PhHOPd  source (5 mol%)

(±)-BINAP (5 mol%)
PhB(OH)2 (2.0 mol equiv)

NaOt-Bu (2 mol equiv)
DME/H2O=5:1
100 ˚C, 24 h

1 2

Entry Pd source Yieldb (%)

1 Pd(OAc)2 63c

2 Pd(OCOCF3)2 NRd

3 Pd(dba)2 NRd
Recently, Rh-catalyzed carbon–carbon bond forming
reactions with arylboron reagents have been developed.1

Arylboron reagents are nontoxic, air-stable, and practi-
cally useful. Miyaura found that Rh(I) complexes cata-
lyze 1,2-addition to aldehyde with arylboronic acid.2,3

From the viewpoint of cost, since the use of a cheaper
metal than Rh is desirable, we were interested in using
a Pd catalyst for arylation of aromatic aldehydes with
arylboronic acids. However, unlike the Rh catalyst,
the Pd catalyst showed rare activity for the 1,2-addition
of arylboronic acids to aromatic aldehydes.4–8 To date,
only one successful example of Pd-catalyzed arylation
of aromatic aldehydes with arylboronic acids has been
reported by Ito and Ohta.9,10 According to their report,
it is described that the use of CHCl3 is crucial for this
Pd-catalyzed arylation, and in the absence of CHCl3,
the arylation does not proceed at all. Herein we would
like to report our investigations on Pd-catalyzed aryla-
tion of aromatic aldehydes with arylboronic acids in
the absence of harmful CHCl3.

We considered that if arylboronic acid is activated by a
strong base, this arylation in which a key step is trans-
metalation between the Pd catalyst and arylboronic
acid, would smoothly proceed. We first screened Pd
sources with (±)-BINAP as a ligand and NaOt-Bu as
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a base in DME/H2O = 5:1 (from the viewpoint of easy
handling, NaOt-Bu was used in place of NaOH. NaOH
is produced in situ) as shown in Table 1. Among the Pd
sources screened, only Pd(OAc)2 catalyzed this arylation
(entry 1). The use of KOt-Bu, LiOt-Bu, i-Pr2NEt, and
pyridine as a base gave less satisfactory results. The
effect of ligands was then examined (Table 2). As shown
in entries 3–5, the use of monodentate PPh3, and biden-
tate dppp and dppb with smaller bite angle than (±)-BI-
NAP resulted in no reaction. A (±)-BINAP derivative,
(±)-tol-BINAP, was the best ligand (Table 2, entry 2).
4 PdCl2(MeCN)2 NRd

a The reactions were performed using 1-naphthaldehyde (1), 5 mol %
of Pd and (±)-BINAP, and 2 mol equiv of PhB(OH)2 and NaOt-Bu
in DME/H2O = 5:1 at 100 �C for 24 h.

b Isolated yield.
c Remainder of mass balance was the starting 1-naphthaldehyde (1).
d No reaction occurred.
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Table 2. Effect of ligandsa

Pd(OAc)2 (5 mol %)
Ligand (5 mol %)
PhB(OH)2 (2.0 mol equiv)

NaOt-Bu (2 mol equiv)
DME/H2O=5:1
100 ˚C, 24 h

1 2

Entry Ligand Yieldb (%)

1 (±)-BINAP 63c

2 (±)-Tol-BINAP 86
3d PPh3 NRe

4 dppp NRe

5 dppb NRe

a The reactions were performed using 1-naphthaldehyde (1), 5 mol %
of Pd(OAc)2 and ligand, and 2 mol equiv of PhB(OH)2 and NaOt-Bu
in DME/H2O = 5:1 at 100 �C for 24 h.

b Isolated yield.
c Remainder of mass balance was the starting 1-naphthaldehyde (1).
d The use of 10 mol % of PPh3 also resulted in no reaction.
e No reaction occurred.
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Results of the arylation of aromatic aldehydes with aryl-
boronic acids are shown in Table 3. As can be seen in
entries 1–4, the electronic effect in the arylboronic acids
was observed. Noteworthy is that electron-deficient aryl-
boronic acids reacted smoothly with 1-naphthaldehyde
(1), affording the corresponding products in good yields,
because Ito and Ohta have reported that the arylation
with electron-deficient arylboronic acids in the presence
of Pd–CHCl3 catalyst is sluggish.9 Since 2-tolylboronic
acid bears an ortho-substituent on the benzene ring (en-
try 5), and both electron-deficient and -rich aromatic
aldehydes (entries 7–11) showed a somewhat low reac-
tivity, their reactions were performed with 3 mol equiv
Table 3. Pd(OAc)2-(±)-tol-BINAP catalyzed arylation of aromatic
aldehydes with arylboronic acidsa

Ar-CHO
Ar'Ar

OH

Pd(OAc)2 (5 mol %)
(±)-tol-BINAP (5 mol %)
Ar'B(OH)2 (2.0 mol equiv)

NaOt-Bu (2 mol equiv)
DME/H2O=5:1
100 °C,24 h

Entry Aromatic aldehyde Arylboronic acid Yieldb,c (%)

1 1-Naphthaldehyde 4-F–C6H4–B(OH)2 85
2 1-Naphthaldehyde 4-Cl–C6H4–B(OH)2 85
3 1-Naphthaldehyde 4-Me–C6H4–B(OH)2 81
4 1-Naphthaldehyde 4-MeO–C6H4–B(OH)2 74
5d 1-Naphthaldehyde 2-Me–C6H4–B(OH)2 72
6 2-Naphthaldehyde Ph–B(OH)2 92
7d 4-F–C6H4–CHO Ph–B(OH)2 76
8d 4-Cl–C6H4–CHO Ph–B(OH)2 77
9d 4-Me–C6H4–CHO Ph–B(OH)2 70
10d 2-MeO–C6H4–CHO Ph–B(OH)2 50
11d 2-Cl–C6H4–CHO Ph–B(OH)2 85

a The reactions were performed using aromatic aldehyde, 5 mol % of
Pd(OAc)2 and (±)-tol-BINAP, and 2 mol equiv of Ar 0B(OH)2 and
NaOt-Bu in DME/H2O = 5:1 at 100 �C for 24 h.

b Isolated yield.
c Remainder of mass balance was the starting aromatic aldehyde.
d 3 Mol equiv of Ar0B(OH)2 was used.
of Ar 0B(OH)2. Electronic effects in the aldehydes were
also observed. Compared with electron-rich aldehydes,
the reaction with electron-deficient aldehydes resulted
in better yields.

In summary, Pd(OAc)2-(±)-tol-BINAP catalyst11 in the
absence of CHCl3 was found to proceed arylation reac-
tion of aromatic aldehydes with arylboronic acids.12

Mechanistic study13 and development of an asymmetric
version14 are now in progress. Further, ongoing efforts
are focused on using a much cheaper and more natural
resources-abundant metal in this arylation.15
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2H), 8.00–8.08 (m, 1H). 13C NMR (CDCl3): d = 19.26,
69.95, 123.45, 124.48, 125.24, 125.55, 126.05, 126.25,
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2-Naphthylphenylmethanol (entry 6). The physical data as
shown below were comparable to those reported: Seebach,
D.; Beck, A. K.; Roggo, S.; Wonnacotto, A. Chem. Ber.
1985, 118, 3673. IR (Nujol): m = 3227 cm�1. 1H NMR
(CDCl3): d = 2.34 (br s, 1H), 6.02 (s, 1H), 7.24–7.54 (m,
8H), 7.76–7.89 (m, 3H), 7.91 (s, 1H). 13C NMR (CDCl3):
d = 76.33, 124.64, 124.87, 125.86, 126.08, 126.58, 127.56,
127.94, 128.22, 128.43, 132.71, 133.08, 140.93, 143.45.
EIMS: m/z = 234 (M+), 155, 129, 105, 77. Anal. calcd
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J = 3.6 Hz, 1H), 6.23 (d, J = 3.6 Hz, 1H), 7.18–7.45 (m,
8H), 7.61 (dd, J = 7.7, 1.7 Hz, 1H). 13C NMR (CDCl3):
d = 72.55, 126.78, 126.93, 127.61, 127.81, 128.31, 128.57,
129.35, 132.27, 140.74, 141.98. FABMS: m/z = 221
(M++1), 219 (M++1). Anal. calcd for C13H11ClO: C,
71.40; H, 5.07. Found C, 71.36; H, 5.05.
Phenyl-(4-tolyl)methanol (entry 9). The spectral data as
shown below were comparable to those reported: Seebach,
D.; Beck, A. K.; Roggo, S.; Wonnacotto, A. Chem. Ber.
1985, 118, 3673. IR (Nujol): m = 3330 cm�1. 1H NMR
(CDCl3): d = 2.14 (br d, J = 3.3 Hz, 1H), 2.33 (s, 3H),
5.82 (br d, J = 3.3 Hz, 1H), 7.14 (d, J = 7.9 Hz, 1H · 2),
7.26 (d, J = 7.9 Hz, 1H · 2), 7.28–7.42 (m, 5H). 13C NMR
(CDCl3): d = 21.16, 76.10, 126.35, 126.42, 127.34, 128.32,
129.06, 137.15, 140.85, 143.84. EIMS: m/z = 198 (M+),
183, 105, 77. Anal. calcd for C14H14O: C, 84.81; H, 7.12.
Found C, 84.69; H, 6.86.
2-Methoxyphenylphenylmethanol (entry 10). The physical
data as shown below were comparable to those reported:
Oi, S.; Moro, M.; Inoue, Y. Organometallics 2001, 20,
1036. IR (neat): m = 3403 cm�1. 1H NMR (CDCl3):
d = 3.04 (d, J = 5.4 Hz, 1H), 3.82 (s, 3H), 6.06 (d,
J = 5.4 Hz, 1H), 6.90 (d, J = 8.5 Hz, 1H), 6.94 (dd,
J = 7.6, 7.6 Hz, 1H), 7.19–7.43 (m, 7H). 13C NMR
(CDCl3): d = 55.32, 72.06, 110.54, 120.61, 126.37,
126.96, 127.62, 127.98, 128.52, 131.72, 143.04. EIMS:
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m/z = 214 (M+), 196, 195, 135, 105, 77. Anal. calcd
for C14H14O2: C, 78.48; H, 6.59. Found C, 78.79; H,
6.80.
2-Chlorophenylphenylmethanol (entry 11). The spectral
data as shown below were comparable to those reported:
Ohkuma, T.; Koizumi, M.; Ikehira, H.; Yokozawa, T.;
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m = 3341 cm�1. 1H NMR (CDCl3): d = 2.34 (d,
J = 3.6 Hz, 1H), 6.23 (d, J = 3.6 Hz, 1H), 7.18–7.45 (m,
8H), 7.61 (dd, J = 7.7, 1.7 Hz, 1H). 13C NMR (CDCl3):
d = 72.55, 126.78, 126.93, 127.61, 127.81, 128.31, 128.57,
129.35, 132.27, 140.74, 141.98. FABMS: m/z = 221
(M++1), 219 (M++1). Anal. calcd for C13H11ClO: C,
71.40; H, 5.07. Found C, 71.23; H, 5.10.
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